Электрические колебания - Definition. Was ist Электрические колебания
Diclib.com
Wörterbuch ChatGPT
Geben Sie ein Wort oder eine Phrase in einer beliebigen Sprache ein 👆
Sprache:

Übersetzung und Analyse von Wörtern durch künstliche Intelligenz ChatGPT

Auf dieser Seite erhalten Sie eine detaillierte Analyse eines Wortes oder einer Phrase mithilfe der besten heute verfügbaren Technologie der künstlichen Intelligenz:

  • wie das Wort verwendet wird
  • Häufigkeit der Nutzung
  • es wird häufiger in mündlicher oder schriftlicher Rede verwendet
  • Wortübersetzungsoptionen
  • Anwendungsbeispiele (mehrere Phrasen mit Übersetzung)
  • Etymologie

Was (wer) ist Электрические колебания - definition

ВОЛНОВОЙ ПРОЦЕСС
Электромагнитная волна; Электрические колебания; ЭМВ
  • магнитного]] полей. На рисунке — плоскополяризованная волна, распространяющаяся слева направо. Колебания электрического поля изображены в вертикальной плоскости, а колебания магнитного поля — в горизонтальной.

Электрические колебания         

Электромагнитные колебания в системе проводников в случае, когда можно не учитывать электромагнитные поля в окружающем пространстве, а рассматривать только движения электрических зарядов в проводниках. Обычно это возможно в так называемых квазистационарных системах с размерами, малыми по сравнению с длиной электромагнитной волны.

Электромагнитные колебания         
Электромагнитные колебания — периодические изменения напряжённости E и индукции B электромагнитного поля.
Электромагнитные колебания         

взаимосвязанные колебания электрического (Е) и магнитного (Н) полей, составляющих единое Электромагнитное поле. Распространение Э. к. происходит в виде электромагнитных волн (См. Электромагнитные волны), скорость которых в вакууме равна скорости света с, а длина волны λ связана с периодом Т и частотой ω соотношением: λ = cT = 2πс/ω. По своей природе Э. к. представляют собой совокупность фотонов, и только при большом числе фотонов их можно рассматривать как непрерывный процесс.

Различают вынужденные Э. к., поддерживаемые внешними источниками, и собственные Э. к., существующие и без них. В неограниченном пространстве или в системах с потерями энергии (диссипативных) возможны собственные Э. к. с непрерывным спектром частот. Пространственно ограниченные консервативные (без потерь энергии) системы имеют дискретный спектр собственных частот, причём каждой частоте соответствует одно или несколько независимых колебаний (мод (См. Мода)). Например, между двумя отражающими плоскостями, отстоящими друг от друга на расстояние λ, возможны только синусоидальные Э. к. с частотами ωn = пπс/l, где п - целое число. Собственно моды имеют вид синусоидальных стоячих волн (См. Стоячие волны), в которых колебания векторов Е и Н сдвинуты во времени на T/4, а пространственные распределения их амплитуд смещены на λ/4, так что максимумы (пучности) Е совпадают с нулями (узлами) Н и наоборот. В таких Э. к. энергия в среднем не переносится в пространстве, но внутри каждого четвертьволнового участка между узлами полей происходит независимая периодическая перекачка электрической энергии в магнитную и обратно.

Представление Э. к. в виде суперпозиции мод с дискретным или непрерывным спектром допустимо для любой сложной системы проводников и диэлектриков (см. Радиоволновод, Объёмный резонатор, Открытый резонатор), если поля, токи, заряды в них связаны между собой линейными соотношениями. В квазистационарных системах, размеры которых значительно меньше длины волны, области, где преобладают электрические или магнитные поля, могут быть пространственно разделены и сосредоточены в отдельных элементах: Е - в ёмкостях С, Н - в индуктивностях L. Типичный пример такой системы с сосредоточенными параметрами - Колебательный контур, где происходят колебания зарядов на обкладках конденсаторов и токов в катушках самоиндукции. Э. к. в системах с распределёнными параметрами L и С, имеющие дискретный спектр собственных частот, могут быть представлены как Э. к. в связанных колебательных контурах (электромагнитных осцилляторах), число которых равно числу мод.

В средах Э. к. взаимодействуют со свободными и связанными заряженными частицами (электронами, ионами), создавая индуцированные токи. Токи проводимости обусловливают потери энергии и затухание Э. к.; токи, обусловленные поляризацией и намагниченностью среды, определяют значения её диэлектрической проницаемости (См. Диэлектрическая проницаемость) и магнитной проницаемости (См. Магнитная проницаемость), а также скорость распространения в ней электромагнитных волн и спектр собственных частот Э. к. Если индуцированные токи зависят от Е и Н нелинейно, то период, форма и другие характеристики Э. к. зависят от их амплитуд (см. Нелинейные колебания); при этом принцип суперпозиции недействителен, и может происходить перекачка энергии Э. к. от одних частот к другим. На этом основаны принципы работы большинства генераторов, усилителей и преобразователей частоты Э. к. (см. Генерирование электрических колебаний, Автоколебания). Возбуждение Э. к. в устройствах с сосредоточенными параметрами, как правило, осуществляется путем прямого подключения к ним генераторов, в высокочастотных устройствах с распределёнными параметрами - путём возбуждения Э. к. при помощи различных элементов связи (вибраторов, петель связи, рамок, отверстий и др.), в оптических устройствах - с применением линз, призм, отражающих полупрозрачных зеркал и т. д.

Лит.: Горелик Г. С., Колебания и волны, 2 изд., М., 1959; Андронов А. А, Витт А. А., Хайкин С. Э., Теория колебаний, 2 изд., М., 1959; Парселл Э., Электричество и магнетизм, пер. с англ., 2 изд., М., 1975 (Берклеевский курс физики, т. 2); Крауфорд Ф., Волны, пер. с англ., 2 изд., М., 1976 (Берклеевский курс физики, т. 3).

М. А. Миллер, Л. А. Островский.

Wikipedia

Электромагнитные колебания

Электромагнитные колебания — периодические изменения напряжённости E {\displaystyle E} и индукции B {\displaystyle B} электромагнитного поля.

Электромагнитными колебаниями являются радиоволны, микроволны, инфракрасное излучение, видимый свет, ультрафиолетовое излучение, рентгеновские лучи, гамма-лучи.

Существует близкий термин — электрические колебания. Периодические ограниченные изменения величин заряда q {\displaystyle q} , тока I {\displaystyle I} или напряжения U {\displaystyle U} называют электрическими колебаниями. Синусоидальный переменный электрический ток является одним из видов вынужденных электрических колебаний.

Beispiele aus Textkorpus für Электрические колебания
1. Эта крошечная фабрика звуков преобразует механические колебания окружающей среды в электрические колебания головного мозга.
2. Ученый подчеркивал, что процессы, сопровождающие работу организма, вызывают различные электрические колебания.
3. После чего на экране появляются схематические изображения мозга целителя, усеянного внутри темными и белыми точками. «Энцефалограмма пишет электрические колебания активности мозга.
4. ИТАР-ТАСС *** Электрические колебания В последнюю минуту торгов на бирже РТС привилегированные акции РАО "ЕЭС России" в результате единственной сделки обесценились на 11, 3%. Обыкновенные акции электроэнергетической монополии подешевели на 6, 82%. Индекс РТС при этом упал на 4, 73%. Столь резкое снижение котировок, судя по всему, связано с ожиданием решений, которые могут быть приняты сегодня на заседании правительства, где будет рассматриваться вопрос о ходе реформирования электроэнергетики.
Was ist Электр<font color="red">и</font>ческие колеб<font color="red">а</font>ния - Definition